Search results for "Feature Dimension"
showing 3 items of 3 documents
Individual differences in working memory capacity are unrelated to the magnitudes of retrocue benefits
2021
AbstractPrevious studies have associated visual working memory (VWM) capacity with the use of internal attention. Retrocues, which direct internal attention to a particular object or feature dimension, can improve VWM performance (i.e., retrocue benefit, RCB). However, so far, no study has investigated the relationship between VWM capacity and the magnitudes of RCBs obtained from object-based and dimension-based retrocues. The present study explored individual differences in the magnitudes of object- and dimension-based RCBs and their relationships with VWM capacity. Participants completed a VWM capacity measurement, an object-based cue task, and a dimension-based cue task. We confirmed tha…
Feature selection for KNN classifier to improve accurate detection of subthalamic nucleus during deep brain stimulation surgery in Parkinson’s patien…
2017
The tremor and dystonia associated with Parkinson’s disease can be treated with deep brain stimulation (DBS) implanted into the subthalamic nucleus (STN). The accurate STN detection is a complex neurosurgeon task during a DBS surgery since a proper fixing of stimulating electrodes will impact on the patient’s future life. The brain electrical signals obtained with Micro Electrodes Register (MER) are acquired at different depths of the brain during DBS surgery to detect STN. In our previous work, we found good accuracy performance to improve the localization of STN using K-Nearest Neighbours (KNN) supervised learning algorithm. However, for real-time classification, it is essential to reduce…
Feature Dimensionality Reduction for Mammographic Report Classification
2016
The amount and the variety of available medical data coming from multiple and heterogeneous sources can inhibit analysis, manual interpretation, and use of simple data management applications. In this paper a deep overview of the principal algorithms for dimensionality reduction is carried out; moreover, the most effective techniques are applied on a dataset composed of 4461 mammographic reports is presented. The most useful medical terms are converted and represented using a TF-IDF matrix, in order to enable data mining and retrieval tasks. A series of query have been performed on the raw matrix and on the same matrix after the dimensionality reduction obtained using the most useful techni…